
This presentation will introduce you to the fundamentals of C programming. We will cover the history of the C language, its 
syntax, control structures, functions, arrays, pointers, and how to handle input and output. By the end of this session, you will 
have a solid understanding of the basics of C programming and be ready to dive deeper into more advanced topics.

Introduction to C Programming



Overview of C Language

CONTENTS(1)

Basic Syntax of C

Setting Up the Environment

Control Structures



Functions in C

Arrays and Pointers

CONTENTS(2)

Conclusion and Next Steps

Input and Output



Developed in the 
early 1970s by 
Dennis R itchie.

History Features Applications

Overview of C Language

Structured, 
procedural, and 
low-level access to 
memory.

Used in system 
programming, 
embedded 
systems, and 
more.



2 31

Setting Up the Environment

Configure 
Environment 
Variables

Ensure your 
system 
recognizes the 
compiler 
commands.

Choose a 
suitable C 
compiler for your 
system.

Set Up an IDE

Install an 
Integrated 
Development 
Environment for 
easier coding.

Install a 
Compiler



2

1

3

4

Choose IDE

Write your first C program in a text editor.

Write First Program

Setting Up the Environment

Install a C compiler (e.g., GCC, Clang).

Configure the environment variables for easy access to the 
compiler.

Choose an Integrated Development Environment (IDE) or text editor 
(e.g., Code::Blocks, Visual Studio Code).

Install Compiler

Configure Variables



Variables

Defines the type of data a variable 

can hold.

Operators

Basic Syntax of C

Data Types

Symbols that perform operations 

on variables and values.

Used to store data values.



Comments

Common types include int, float, 

char, and double.

Basic Syntax of C

Use // for single-line comments 

and /* ... */ for multi-line 

comments.

Variables

Arithmetic, relational, and 

logical operators are used for 

operations.

Declare variables using the 

syntax data_type 

variable_name;.

Operators

Data Types



21 3If Statements Loops Switch Cases

Control Structures

Used for conditional execution. For repeating a block of code. Used for multi-way branching.



LoopsConditional Statements

if, else if, and else for decision-making. for, while, and do-while loops for 

repeated execution.

Switch Statement

A multi-way branch statement.

Control Structures



321 UsageSyntaxDefinition

Functions in C

Functions have a 

specific syntax 

including return 

type, name, and 

parameters.

Functions help in 

code reusability 

and organization.

A function is a 

block of code 

that performs a 

specific task.



Variables defined inside a function are local to that 

function.

Functions in C

Function Call Scope

Invoking a function using its name and passing 

arguments.

Function Definition

Contains the code to be executed.

Function Declaration

Syntax is return_type function_name(parameters).



2 31 Definition

Arrays are 

collections of 

elements.

UsagePointers

Arrays and Pointers

Pointers store 

memory 

addresses.

Used for 

dynamic memory 

allocation.



Arrays

Arrays and Pointers

A collection of elements of the same 
type, declared as data_ type 
array_name[size].

Pointers

Variables that store memory 
addresses, declared as data_ type 
*pointer_name.

Pointer Arithmetic

Allows manipulation of array elements 
using pointers.



Displaying data on the screen.

Input and Output

Reading data from the keyboard.

File Input

Standard Output

Writing data to files.Reading data from files.

Standard Input

File Output



1 32

Functions like 
fopen, fclose, 
fprintf, and fscanf 
for file 
operations.

scanf

Used for 
outputting data 
to the console.

File I/Oprintf

Used for reading 
input from the 
user.

Input and Output



Conclusion and Next Steps

Engage in hands-on coding 
exercises to reinforce learning.

Practice Coding

Consider diving into more complex 
areas of C programming.

Explore Advanced Topics

Revis it the main topics covered in 
the course.

Review Key Concepts



2 31

Conclusion and Next Steps

Engage with online coding 
communities for support and 
resources.

Explore advanced topics like 
structures and dynamic memory 
allocation.

Practice Programming

Practice writing simple programs.

Explore Advanced Topics Engage with Communities



31 2

Feel free to ask 
any questions.

Appreciation

Looking forward 
to your feedback.

Thank You

Next StepsQuestions

Thank you for 
your attention.


